Broad Distribution of TPI-GAPDH Fusion Proteins among Eukaryotes: Evidence for Glycolytic Reactions in the Mitochondrion?

نویسندگان

  • Takuro Nakayama
  • Ken-ichiro Ishida
  • John M. Archibald
چکیده

Glycolysis is a central metabolic pathway in eukaryotic and prokaryotic cells. In eukaryotes, the textbook view is that glycolysis occurs in the cytosol. However, fusion proteins comprised of two glycolytic enzymes, triosephosphate isomerase (TPI) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH), were found in members of the stramenopiles (diatoms and oomycetes) and shown to possess amino-terminal mitochondrial targeting signals. Here we show that mitochondrial TPI-GAPDH fusion protein genes are widely spread across the known diversity of stramenopiles, including non-photosynthetic species (Bicosoeca sp. and Blastocystis hominis). We also show that TPI-GAPDH fusion genes exist in three cercozoan taxa (Paulinella chromatophora, Thaumatomastix sp. and Mataza hastifera) and an apusozoan protist, Thecamonas trahens. Interestingly, subcellular localization predictions for other glycolytic enzymes in stramenopiles and a cercozoan show that a significant fraction of the glycolytic enzymes in these species have mitochondrial-targeted isoforms. These results suggest that part of the glycolytic pathway occurs inside mitochondria in these organisms, broadening our knowledge of the diversity of mitochondrial metabolism of protists.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compartment-specific isoforms of TPI and GAPDH are imported into diatom mitochondria as a fusion protein: evidence in favor of a mitochondrial origin of the eukaryotic glycolytic pathway.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and triosephosphate isomerase (TPI) are essential to glycolysis, the major route of carbohydrate breakdown in eukaryotes. In animals and other heterotrophic eukaryotes, both enzymes are localized in the cytosol; in photosynthetic eukaryotes, GAPDH and TPI exist as isoenzymes that function in the glycolytic pathway of the cytosol and in the Calvin...

متن کامل

A transcriptional fusion of genes encoding glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase in dinoflagellates.

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and enolase are enzymes essential for glycolysis and gluconeogenesis. Dinoflagellates possess several types of both GAPDH and enolase genes. Here, we identify a novel cytosolic GAPDH-enolase fusion protein in several dinoflagellate species. Phylogenetic analyses revealed that the GAPDH moiety of this fusion is weakly related to a cytosolic GAPDH ...

متن کامل

Evidence for Loss of a Partial Flagellar Glycolytic Pathway during Trypanosomatid Evolution

Classically viewed as a cytosolic pathway, glycolysis is increasingly recognized as a metabolic pathway exhibiting surprisingly wide-ranging variations in compartmentalization within eukaryotic cells. Trypanosomatid parasites provide an extreme view of glycolytic enzyme compartmentalization as several glycolytic enzymes are found exclusively in peroxisomes. Here, we characterize Trypanosoma bru...

متن کامل

Inhibition of glyceraldehyde-3-phosphate dehydrogenase activity by antibodies present in the cerebrospinal fluid of patients with multiple sclerosis.

We have previously shown that B cells and Abs reactive with GAPDH and antitriosephosphate isomerase (TPI) are present in lesions and cerebrospinal fluid (CSF) in multiple sclerosis (MS). In the current study, we studied the effect of anti-GAPDH and anti-TPI CSF IgG on the glycolytic enzyme activity of GAPDH and TPI after exposure to intrathecal IgG from 10 patients with MS and 34 patients with ...

متن کامل

An operon encoding three glycolytic enzymes in Lactobacillus delbrueckii subsp. bulgaricus: glyceraldehyde-3-phosphate dehydrogenase, phosphoglycerate kinase and triosephosphate isomerase.

The structural genes gap, pgk and tpi encoding three glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), 3-phosphoglycerate kinase (PGK) and triosephosphate isomerase (TPI), respectively, have been cloned and sequenced from Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus). The genes were isolated after screening genomic sublibraries with specific gap and pgk probes ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012